skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Weston"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent record rainfall and flood events have prompted increased attention to flood impacts on human systems. Information regarding flood effects on food security is of particular importance for humanitarian organizations and is especially valuable across Africa's rural areas that contribute to regional food supplies. We quantitatively evaluate where and to what extent flooding impacts food security across Africa, using a Granger causality analysis and panel modeling approaches. Within our modeled areas, we find that ∼12% of the people that experienced food insecurity from 2009 to 2020 had their food security status affected by flooding. Furthermore, flooding and its associated meteorological conditions can simultaneously degrade food security locally while enhancing it at regional spatial scales, leading to large variations in overall food security outcomes. Dedicated data collection at the intersection of flood events and associated food security measures across different spatial and temporal scales are required to better characterize the extent of flood impact and inform preparedness, response, and recovery needs. 
    more » « less
  2. Abstract This commentary discusses new advances in the predictability of east African rains and highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, and agricultural decision‐making. Following an unprecedented sequence of five droughts, 23 million east Africans faced starvation in 2022, requiring >$2 billion in aid. Here, we update climate attribution studies showing that these droughts resulted from an interaction of climate change and La Niña. Then we describe, for the first time, how attribution‐based insights can be combined with the latest dynamical models to predict droughts at 8‐month lead‐times. We then discuss behavioral and social barriers to forecast use, and review literature examining how EWS might (or might not) enhance agro‐pastoral advisories and humanitarian interventions. Finally, in reference to the new World Meteorological Organization “Early Warning for All” Executive Action Plan, we conclude with a set of recommendations supporting actionable and authoritative climate services.Trust,urgency, andaccuracycan help overcome barriers created bylimitedfunding,uncertain tradeoffs, andinertia. Understanding how climate change is producing predictable climate extremes now, investing in African‐led EWS, and building better links between EWS and agricultural development efforts can support long‐term adaptation, reducing chronic needs for billions of dollars in reactive assistance. In Africa and beyond, climate change brings increasingly extreme sea surface temperature (SST) gradients. Using climate models, we can often see these extremes coming. Prediction, therefore, offers opportunities for proactive risk management and improved advisory services, if we can create effective societal linkages via cross‐silo collaborations. 
    more » « less
  3. null (Ed.)
  4. Abstract Humans’ essential ability to combat heat stress through sweat-based evaporative cooling is modulated by ambient air temperature and humidity, making humid heat a critical factor for human health. In this study, we relate the occurrence of extreme humid heat in two focus regions to two related modes of intraseasonal climate variability: the Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). In the Persian Gulf and South Asia during the May–June and July–August seasons, wet-bulb temperatures of 28°C are found to be almost twice as likely during certain oscillation phases than in others. Variations in moisture are found, to varying degrees, to be an important ingredient in anomalously high wet-bulb temperatures in all three areas studied, influenced by distinct local circulation anomalies. In the Persian Gulf, weakening of climatological winds associated with the intraseasonal oscillation’s propagating center of convection allows for anomalous onshore advection of humid air. Anomalously high wet-bulb temperatures in the northwestern region of South Asia are closely aligned with positive specific humidity anomalies associated with the convectively active phase of the oscillation. On the southeastern coast of India, high wet-bulb temperatures are associated with convectively inactive phases of the intraseasonal oscillation, suggesting that they may be driven by increased surface insolation and reduced evaporative cooling during monsoon breaks. Our results aid in building a foundation for subseasonal predictions of extreme humid heat in regions where it is highly impactful. Significance StatementUnderstanding when and why extreme humid heat occurs is essential for informing public health efforts protecting against heat stress. This analysis works to improve our understanding of humid heat variability in two at-risk regions, the Persian Gulf and South Asia. By exploring how subseasonal oscillations affect daily extreme events, this analysis helps bridge the prediction gap between weather and climate. We find that extreme humid heat is more than twice as likely during specific phases of these oscillations than in others. Extremes depend to different extents upon combinations of above-average temperature and humidity. This new knowledge of the regional drivers of humid heat variability is important to better prepare for the increasingly widespread health and socioeconomic impacts of heat stress. 
    more » « less